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In their target article, Bowers and Davis (2012) present an
extensive critique of Bayesian models of cognition. However, this
critique makes general claims about Bayesian models based on
careful selection of specific examples and has a singular focus on
identifying the weaknesses of the Bayesian approach rather than
considering its merits relative to other theoretical frameworks. As
a consequence, the reader may come away with several miscon-
ceptions about the goals and status of Bayesian models of cogni-
tion, along with an overly pessimistic view of the prospects of this
approach. In this comment, we attempt to correct these miscon-
ceptions and to identify what we see as the merits of the Bayesian
approach over other theoretical frameworks for studying human
cognition. We support our claims by appealing to many of the
specific examples of Bayesian models cited by Bowers and Davis.

Misconceptions About Bayesian Models

The arguments presented by Bowers and Davis (2012) paint a
picture of Bayesian models (and Bayesian modelers) that we do
not believe is accurate. In this section, we identify and address six
misconceptions that a reader of their article could obtain.

The Goal of Bayesian Modeling Is to Show That
People Are Optimal

Bowers and Davis (2012) focus on the idea that Bayesian
modelers seek to show that people perform optimally at particular
tasks. However, this is rarely the goal of Bayesian modeling.
Rather, Bayesian models typically aim to provide explanations of
human behavior. Identifying optimal solutions to computational
problems posed by the environment and comparing these optimal
solutions to human behavior is the tool that is used to yield these
explanations. That the solutions are optimal licenses a particular
kind of explanation—an explanation of cognition in terms of
function, known as a “teleological explanation”—allowing us to
assert that the match between the solution and human behavior
may be why people act the way that they do.1

Comparing human behavior to optimal solutions does not imply
a belief that people are actually computing those optimal solutions.
Computing optimal solutions in complex tasks is simply not a
viable hypothesis about how the mind or brain works. For instance,
we have about 1,000 olfactory receptors, and we can recognize
1,000–10,000 odors. Performing inference over these variables for
an arbitrary pattern of olfactory receptor activation is computa-
tionally intractable. The same problem occurs in most realistic
problems of inductive inference, such as object recognition, diag-
nosing diseases, and interpreting sentences. Rather than providing
evidence that people are computing the optimal solutions, a cor-

1 Note that the term teleological explanation does not imply that the
evolution of neural mechanisms performing Bayesian computations will
have been driven by the goal of performing those calculations. Rather,
teleological explanation provides an account of why natural selection
might favor one mechanism rather than another, as in the rest of biology.
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respondence between these solutions and human behavior suggests
that we should begin to explore approximate algorithms that can
find decent solutions to these problems in reasonable time, as we
discuss in detail below.

The authors distinguish between “Type 1” and “Type 2” an-
swers to “why” questions, with Type 1 being the (apparently more
common) claim that people are optimal in an unqualified sense,
whereas Type 2 is the claim that people are optimal with respect to
a set of assumptions. This distinction does not seem meaningful, as
only Type 2 questions appear to be well posed. In other words,
optimal behavior is not defined without a specification of the
problem being solved, and the assumptions of the agent are a key
part of any inductive problem. Because the assumption of opti-
mality means the solution is fully determined by the problem, the
content of any Bayesian model of cognition reduces to a set of
claims about this problem.

Viewed in this light, a Bayesian model is just an empirical
hypothesis, in the same way as models developed in other theo-
retical frameworks. Models can be evaluated against existing data,
but should also be used to make new predictions that are tested in
the laboratory. The main differences from other kinds of models
are that (a) the content of the Bayesian model is a proposal about
the problem that people are solving rather than a characterization
of the mechanisms by which they might be solving it, and (b) the
style of explanation is teleological rather than mechanistic.

This characterization of Bayesian models should make it clear
that the Bayesian framework is a means of generating empirical
hypotheses, rather than an assertion that people are optimal or that
particular kinds of processes take place inside people’s heads. This
approach seems close to what the authors refer to as “methodolog-
ical Bayesianism,” which we believe is the dominant view among
Bayesian modelers (as opposed to their “theoretical Bayesianism,”
which, as we note below, may not exist).

In rare cases Bayesian models are used to argue that people
behave optimally on a specific task. For example, Griffiths and
Tenenbaum (2006) used a Bayesian model to argue that people
accurately incorporate information about the distributions of dif-
ferent quantities in forming predictions. We agree with Bowers
and Davis (2012) that making an argument of this kind requires
strong constraints on the assumptions that go into such models.
However, we also believe that such constraints are commonly used
in cases where Bayesian models are used to argue for optimality.
For example, Griffiths and Tenenbaum collected empirical esti-
mates of the appropriate prior distributions and derived their model
predictions directly from these estimated distributions.

Bayesian Models Are Unfalsifiable and Overly Flexible

In evaluating claims about falsifiability, it is useful to distin-
guish between a model and a theoretical framework. A model is
proposed to account for a specific phenomenon and makes specific
assumptions in order to do so. A theoretical framework provides a
general perspective and a set of tools for making models. For
example, the Bayesian approach outlined above, connectionism
(Rumelhart & McClelland, 1986), and symbolic cognitive archi-
tectures such as ACT–R (Anderson, 1993) are three theoretical
frameworks, each of which can be used to define models of
specific phenomena. Models are falsifiable, but frameworks are
typically not. Rather, frameworks live or die based on their ability

to generate models that are useful. For a detailed discussion of the
role of models and frameworks in science, see Lakatos (1970).

We believe that specific Bayesian models are readily falsifiable
(or, at least, as falsifiable as any empirical hypothesis—any hy-
pothesis can be “saved” by suitable ad hoc adjustments to other
aspects of the theory; e.g., Duhem, 1914/1954; Putnam, 1974). But
the general Bayesian approach, as with any scientific framework,
is not. Frameworks provide the tools for building specific models,
which can be assessed against observation and experiment. Frame-
works, of whatever kind, cannot be falsified directly. Rather, they
can be productive (i.e., creating models with novel predictions,
corroborated by experiment; generating new lines of theoretical
and empirical inquiry), or they can be unproductive (i.e., creating
models that are continually in need of ad hoc patching and that
generate few corroborating novel predictions, or fresh theoretical
insights).

The charge of Bowers and Davis (2012) that the Bayesian
framework is unfalsifiable is, therefore, misconceived: The same
charge could be applied to the germ theory of disease, quantum
mechanics, or the theory of evolution by natural selection. More-
over, lack of falsifiability is a characteristic shared by all other
theoretical frameworks that have been proposed for modeling
cognition. The idea that human cognition emerges from the inter-
action of simple components (e.g., Rumelhart & McClelland,
1986) does not yield falsifiable predictions; the same is true for the
proposal that human cognition is symbolic computation (e.g.,
Newell & Simon, 1976). We would be worried about a lack of
falsifiability if we viewed the Bayesian framework as making the
unconditional assertion that people are optimal, but it should be
clear from the preceding discussion that this is not the case. It may,
however, explain some of the concerns of Bowers and Davis.

Turning to models rather than frameworks, Bowers and Davis
(2012) argue that Bayesian models are unfalsifiable because of
their flexibility in making different assumptions about priors,
likelihoods, and utility functions. We agree that there are poten-
tially many degrees of freedom in Bayesian models but disagree
that there are more degrees of freedom than for other kinds of
models. Connectionist models have a great deal of flexibility in the
choice of architecture, learning algorithm, initialization, and train-
ing set. Symbolic cognitive architectures have potentially infinite
degrees of freedom in the specification of production rules and a
slightly more constrained set of degrees of freedom in the mech-
anisms used to select productions. As in other modeling frame-
works, these degrees of freedom are constrained through the plau-
sibility of different assumptions and the practice of evaluating
models by running experiments to test novel predictions. Being
careful about degrees of freedom and using appropriate procedures
for comparing and testing models are important things to keep in
mind for all forms of computational modeling; they do not con-
stitute a problem that is specific to Bayesian models.

Part of the reason that the degrees of freedom of Bayesian
models might seem salient is that they are unusually transparent.
Using a Bayesian model requires declaring what the priors, like-
lihoods, and utility functions involved might be. Other modeling
approaches implicitly have analogues of these degrees of freedom
(e.g., the learning algorithm used in a neural network can be
interpreted as a prior distribution on the weights; Mackay, 1995),
but the assumptions that are made about their values are less
apparent. Unprincipled assumptions in other models are rarely the
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focus of explicit discussion. For example, connectionist models of
word recognition generally set resting activations proportional to
log frequency (e.g., Davis, 2010) or present words in proportion to
the log of their frequency (Seidenberg & McClelland, 1989). Why
choose a log function? The data show that ease of word recogni-
tion is generally inversely related to log frequency, so modelers
choose a log function because it fits the data. Because the choice
of function does not follow from any theoretical principles, mod-
elers are free to choose any function they like. In contrast, a model
like the Bayesian reader (Norris, 2006) explains the log frequency
on the basis that the prior probability of a word can be approxi-
mated by the probability of the word as derived from word fre-
quency counts.

Bayesian Modelers Believe That “Bayesian Processes”
Underlie Human Cognition

Bowers and Davis (2012) introduce the notion of a “theoretical
Bayesian” as one who believes “that the mind carries out or
approximates Bayesian computations at the algorithmic level, in
some unspecified way” (p. 393). This is a broad definition, since
anybody who believes that people behave in a way that is consis-
tent with Bayesian inference on a given task must believe that the
mind is somehow approximating the Bayesian solution. The posi-
tion is clarified through the definition of a “Bayesian algorithm” as
one that must “(a) store priors in the forms of probability distri-
butions, (b) compute estimates of likelihoods based on incoming
data, (c) multiply these probability functions, and (d) multiply
priors and likelihoods for at least some alternative hypotheses” (p.
393). Under this definition, we suspect theoretical Bayesians (like
the “Bayesian fundamentalists” of Jones & Love, 2011) may not
exist (Chater et al., 2011).

Most Bayesian models of cognition are defined at Marr’s (1982)
“computational level,” characterizing the problem people are solv-
ing and its ideal solution. Such models make no direct claims about
cognitive processes—what Marr termed the “algorithmic level.”
To use Marr’s analogy, a computational level analysis plays a role
in explaining cognition similar to that played by a mathematical
theory of aerodynamics in explaining bird flight. The theory of
aerodynamics says nothing about the anatomical mechanisms of
bone and muscle that support flight other than that they must
produce a solution with particular properties. When explaining
cognition, it is easier to confuse levels of analysis, given that
Bayes’s rule can be viewed as a procedure for updating beliefs as
well as a mathematical solution for what those beliefs should be.
Nonetheless, most Bayesian models appeal to the mathematical
solution rather than the algorithmic procedure.

Recently, advocates of Bayesian models have begun a more
detailed exploration of how computational- and algorithmic-level
models might relate (e.g., Shi, Griffiths, Feldman, & Sanborn,
2010; Vul, Goodman, Griffiths, & Tenenbaum, 2009). These ap-
proaches take the main constraint produced by successful
computational-level analyses to be the idea that people must some-
how be approximating Bayesian inference, and explore algorithms
that have this property. However, these algorithms need not bear a
direct resemblance to Bayesian inference or satisfy Points a–d in
the definition above. For example, Shi et al. (2010) showed that
certain classes of Bayesian models can be approximated with an
exemplar model, a traditional form of psychological process

model. The idea behind this approximation is that people store
examples of past events in memory, which act like samples from
the prior, and then activate these stored exemplars based on their
similarity to observed data, which acts like the likelihood function.
Priors and likelihood functions appear in proving that this algo-
rithm approximates Bayesian inference but disappear into familiar
psychological notions of memory and similarity in defining the
algorithm itself. Although this is just one example, we believe that
there need be nothing intrinsically “Bayesian” about algorithms
that approximate Bayesian inference.

The attractiveness of exploring approximate algorithms as hy-
potheses about cognitive processes is that they clarify what is
being approximated and the nature of the approximation. The
resulting models can be viewed as “heuristics,” but ones that we
understand and can connect directly to optimal solutions, as op-
posed to the “bag of tricks” approach that is sometimes advocated
as an alternative to Bayesian models (and by Bowers & Davis,
2012). We see the combination of optimal solutions and efficient
approximation algorithms as a powerful set of tools for analyzing
how people might solve intractable computational problems.

Bayesian Models Are Never Compared to Other
Approaches

One of the most serious charges of Bowers and Davis (2012) is
that Bayesian modelers fail in their scientific duty to compare their
models to competing explanations. We believe that there is, in
some contexts, an argument as to why such an approach might be
scientifically reasonable, but we also believe that the charge is
largely false (and that this can be illustrated by some of the articles
cited by Bowers and Davis).

As noted above, Bayesian models of cognition are typically
defined at Marr’s (1982) computational level. As such, it is not
clear that they are in competition with accounts proposed at other
levels of analysis, making it less relevant to compare to these
accounts. To return to the example of bird flight, we can imagine
a physicist who has devised a model of bird flight based on
aerodynamics and a biologist who has devised a model based on
the properties of the muscles and bones in a bird’s wing. Both of
these models make predictions about how birds fly. However, it is
not obvious that the models should be compared in their fit or that
one model should be rejected in favor of the other if it fits better.2

The two models can both be valid, giving a characterization of the
phenomenon at different levels of analysis; they are not in com-
petition with one each other. However, the physicist’s model
should be compared with other functional analyses, and the biol-
ogist’s model should be held up against other mechanistic models.

This argument suggests a reason why it might be appropriate not
to compare Bayesian models with other models that are framed in
terms of cognitive or neural processes. However, in practice such
comparisons are extremely common. To take some examples from
the articles cited by Bowers and Davis (2012), Norris (2006)

2 In fact, it is possible to argue that one might expect the mechanistic
account to provide a better fit regardless. A mechanistic account that
actually characterizes the mechanisms correctly should fit better than the
correct functional account, since the functional account will not be able to
capture deviations due to the constraints provided by the mechanisms.
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compared his Bayesian model to a number of non-Bayesian the-
ories; Lewandowsky, Griffiths, and Kalish (2009) were explicitly
motivated by a comparison with heuristic accounts; Oaksford and
Chater (1994) and Feldman, Griffiths, and Morgan (2009) identi-
fied predictions that discriminated their account from other non-
Bayesian explanations; and Ma, Navalpakkam, Beck, van den
Berg, and Pouget (2011) used model comparison to test their
Bayesian models against seven non-Bayesian alternatives.

Probabilistic Population Codes Require Noisy Neurons

Bowers and Davis (2012) are remarkably assertive when it
comes to evaluating the neural evidence for probabilistic inference.
As far as they are concerned, there is no such evidence. To
evaluate this claim, we first need to define what would constitute
a neural Bayesian theory. As we discussed earlier, optimality is not
the key concept. Instead, the central questions are as follows: Do
neurons encode single values, or do they also encode information
about the certainty of the stimulus? Can they represent probability
distributions (or likelihood functions) even when they have mul-
tiple peaks? Moreover, do neural computations take into account
these probability distributions? These are fundamental questions,
particularly because almost all theories of neural computation
proposed in the last 30 years have assumed that neurons encode
single values.

We suspect that, even with this broader definition, Bowers and
Davis (2012) would continue to assert that there is no evidence for
probabilistic encoding in neural circuits. Indeed, they argue that
one of the main theories of how neurons encode probability
distributions (the probabilistic population code idea of Ma, Beck,
Latham, & Pouget, 2006) is based on the assumption that neurons
are noisy, which is problematic given that several laboratories have
shown that neurons are a lot less noisy than previously suspected
and may in fact be very reliable.

If one were to take the characterization of probabilistic popula-
tion codes offered by Bowers and Davis (2012) at face value, a
lack of variability in neurons would seem damning. However,
contrary to what Bowers and Davis suggest, this theory is not
based on the idea that neurons are stochastic devices and that
internal noise is what allows them to encode probability distribu-
tions. Instead, following Marr (1982) and others, Ma et al. (2006)
proposed that uncertainty comes from the nature of the computa-
tional problems faced by the brain: Sensory measurements are not
sufficient to specify the value of the latent variables (such as the
direction of motion of objects or their identity) with absolute
certainty. For instance, recovering the three-dimensional structure
of an image from random dot stereograms is an ill-posed problem,
with an infinite number of solutions, even if the images themselves
are noiseless. Importantly, this external uncertainty implies that the
measurements must vary from trial to trial, not because of noise in
the sensors, but because of variability in the world (e.g., there are
infinitely many images corresponding to the concept of, say,
“car”). This in turn generates variability in the response of the
neurons. Such variability is not under the control of the nervous
system (because it is not generated by the neurons themselves), but
the nervous system gets to decide how to parameterize this uncer-
tainty. The probabilistic population code described by Ma et al.
provides a method for uncovering the parameterization used in the
brain, based on the distribution of neural responses conditioned on

the latent variable (e.g., the variability in middle temporal neurons
for a variety of objects moving, say, rightward).

Is this theory proven wrong if neurons turn out to be nearly
deterministic devices? The answer is clearly no. It is critical not to
confuse variability due to the external world, which is the focus of
Ma et al. (2006), with variability due to internal neuronal noise.
Whether neurons are stochastic is irrelevant to the probabilistic
population code theory. There are plenty of other ways to test this
theory, and the results so far are encouraging: Neural variability
closely follows the distribution used by Ma et al. (Graf, Kohn,
Jazayeri, & Movshon, 2011), and neurons combine their inputs
across sensory modalities (Fetsch, Pouget, DeAngelis, & Ange-
laki, in press) and across time (Beck et al. 2008) in a way that takes
into account the reliability of the encoded signals, as predicted by
the probabilistic approach.

Bayesian Modelers Do Not Believe Constraints From
Biology and Evolution Are Important

One of the most puzzling assertions of Bowers and Davis (2012)
is that the emphasis on computational-level analyses represented
by Bayesian models of cognition implies “of course . . . that the
findings from other domains (e.g., biology and evolution) will play
a relatively minor role in constraining theories in psychology” (p.
406). This is by no means an obvious conclusion. Many Bayesian
modelers share with Marr (1982) the belief that contributions to
understanding the human mind are going to come from all three
levels of analysis, even as they share with him the conviction that
the computational level provides the most effective place to start
understanding feats of inductive inference such as visual percep-
tion, understanding language, and learning causal relationships.
The “function first” strategy highlighted by Griffiths, Chater,
Kemp, Perfors, and Tenenbaum (2010) is not a function-only
strategy, and it is not the only strategy that is likely to ultimately
succeed. There are fundamental questions about the mind and
brain that can only be answered at other levels of analysis, and the
insights yielded by biology and evolution are going to play a key
role in developing an integrated theory at all these levels.

The Merits of the Bayesian Approach

Readers of Bowers and Davis (2012) might come away won-
dering why anybody would bother to make Bayesian models of
cognition, as these models seem to provide few unique insights
into the nature of the mind. In this section, we highlight some of
the factors that we see as merits of the Bayesian approach when
compared to other theoretical frameworks.

Universal Laws

The teleological explanations yielded by Bayesian models of
cognition are valuable not just because they satisfy our desire to
answer why questions, but because they provide the foundation for
universal laws of cognition—principles that we expect to hold true
for intelligent organisms of any kind, anywhere in the universe.
Shepard (1987) made a classic argument for the virtue of such laws
and provided his candidate for the first such law—the universal
law of generalization. This argument rested on a Bayesian analysis
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of the problem of generalization (see Tenenbaum & Griffiths,
2001, for details).

Deriving General Predictions

Bayesian models of cognition cast many different phenomena in
a single framework, and Bayesian inference provides a general
account of learning and memory that provides the basis for many
specific models. As a consequence, predictions that result from
mathematical analyses of models based on Bayesian inference
potentially apply across a wide range of domains. A relevant
example taken from the articles criticized by Bowers and Davis
(2012) is the analysis of serial reproduction given by Xu and
Griffiths (2010). Contrary to the discussion of this article by
Bowers and Davis, the goal of this analysis was not to show that
a rational account could be given of biases in reconstruction from
memory (Huttenlocher, Hedges, & Vevea, 2000, had already pro-
vided such an account). Rather, the goal was to test a general
prediction about how information should change when passed
from person to person that resulted from assuming that human
learning and memory could be modeled as Bayesian inference.
This prediction—that information should change through trans-
mission to come to match people’s prior distributions (Griffiths &
Kalish, 2007)—is expressed at a level of generality where it can be
tested in any domain, with any kind of stimuli. This generality
results from having a general account of learning and memory, in
the form of Bayesian inference, and is valuable because it means
that the same simple result can provide an explanation for aspects
of language evolution (Griffiths & Kalish, 2007) as well as a new
method for estimating people’s prior distributions (Lewandowsky
et al., 2009).

Understanding Why Particular Mechanisms Work

Bowers and Davis (2012) object in several places that phenom-
ena captured by Bayesian models were already explained by
existing mechanisms or might easily be explained by appealing to
intuitive mechanisms. For example, the phenomenon of recon-
struction from memory explored by Xu and Griffiths (2010) and
Huttenlocher et al. (2000) might be explained “as long as memory
of an event is biased toward preexisting knowledge” (p. 400), and
the analysis of the perceptual magnet effect by Feldman et al.
(2009) is criticized as being consistent with a variety of algorith-
mic models. These complaints might reflect a particular set of
beliefs about the goals of cognitive science, which can be illus-
trated through a simple thought experiment.

Imagine, at some point in the future, that cognitive scientists
have succeeded in identifying the cognitive and neural processes
that underlie all aspects of human behavior. Is the task of cognitive
science now complete? We suspect that Bowers and Davis (2012)
might say yes, but many Bayesian modelers would say no. Left
open are questions about why these are the particular mechanisms
that are used, whether there is a simple unifying theory that can
explain them, and whether there are principles that can allow
computers to behave similarly without instantiating the same cog-
nitive and neural processes.

This thought experiment makes it clear how Bayesian models
can be useful even in contexts where the psychological mecha-
nisms are known. The Bayesian model of reconstruction from

memory indicates not just that information from the past should be
used, but exactly how it should be used. This can be captured by
a simple mechanism, but the mechanism is now no longer arbi-
trary. The analysis of the perceptual magnet effect likewise ex-
plains why several previous models were able to capture this
effect: They were approximating the optimal solution to the prob-
lem. To be fair, the concern that Bowers and Davis (2012) ex-
pressed was that this analysis placed few constraints on possible
mechanisms. It actually imposes a strong constraint: We should
expect mechanisms that approximate Bayesian inference to be able
to produce the perceptual magnet effect. It just happens that many
of the mechanisms that decades of research in cognitive science
have converged on do possess this property—something that is
hardly an accident.

Note, though, that the thought experiment is, in most contexts,
very far from reality. It seems to us just as inconceivable that the
mechanisms of cognition can be understood in the absence of an
understanding of their function as that we might be able to unravel
the functioning of a pocket calculator without any notion that it is
doing arithmetic. Given the large role that uncertainty plays in the
problems that people need to solve, we believe that Bayesian
analysis will be play a central role in specifying the function of
different aspects of human cognition.

Identifying Commonalities Between Different
Mechanistic Accounts

Focusing on the abstract computational problems underlying
human cognition can sometimes yield insights that are blurred
when thinking purely in terms of mechanisms. In particular, this
approach can make it possible to recognize the commonalities
between existing theories, and to use this as the basis for identi-
fying new theoretical approaches. One salient example is the
analysis of category learning given by Ashby and Alfonso-Reese
(1995), who showed that category learning could be analyzed as a
problem of density estimation and that popular psychological
process models such as exemplar and prototype models corre-
sponded directly to different strategies for density estimation that
had been explored by statisticians. This insight identifies a com-
monality between these different approaches and immediately
provides access to a theoretical literature about the circumstances
where one approach or the other might be expected to be more
successful. Another example is the analysis of causal induction
given by Griffiths and Tenenbaum (2005), who used causal graph-
ical models to show that previous psychological models of causal
induction had focused on the problem of estimating the strength of
a causal relationship, neglecting the structural question of whether
a relationship existed. Considering this question led to a novel
model of causal induction that performed well in cases that were
problematic for previous models.3

Coherence

Bowers and Davis (2012) substantially underplay the centrality
of coherence in cognition. When, say, judging the depth of a

3 We note that this article provides another example of a case where a
Bayesian model was extensively compared with competing accounts.
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nearby tabletop, the cognitive system is not solving a singular
problem, using a set of specialized tricks for that purpose. Rather,
it builds a representation of the layout of the scene, of which the
tabletop is a part, specifying the depths of locations and orienta-
tions of table, wall, desk, the viewer’s own body, as well as the
location of the vertical, origin of light sources, shadows, and so on.
The components of this representation are not computed separately
but interact in complex ways (that a manuscript occludes the
surface of the desk indicates that it is closer than the desk; the
orientation of the water surface in a drinking glass indicates that
the desk is tilted; and so on). In short, the process of building a
model of the world from a sensory stimulus cannot result from the
operation of independent mechanisms drawn from a “bag of
tricks” (Ramachandran, 1990).

Enforcing coherence constraints requires being able to deter-
mine which degrees of belief about particular aspects of the scene
are (or are not) compatible. The rules of probability are precisely
coherence constraints on degrees of belief. Indeed, a variety of
formal arguments (e.g., Savage, 1954) show that violation of the
laws of probability will lead to incoherent beliefs and actions.
Thus, once we allow that the perception and cognition are con-
cerned not merely with individual judgments, but building coher-
ent models of the world, then a Bayesian analysis becomes close
to inevitable. This approach is, indeed, widely applied in computer
vision (e.g., Zhu, Chen, & Yuille, 2009).4

Coherence constraints are equally crucial in language under-
standing (e.g., the interpretation of each part of the speech signal,
as well as background knowledge, will affect the interpretation of
the rest). Similarly, coherence constraints are crucial in general
knowledge. Suppose it were the case that we have special-purpose
mechanisms for answering questions such as whether Berlin or
Hamburg is the larger city (e.g., Gigerenzer & Goldstein, 1996). If
so, we should presumably have, equally, special-purpose mecha-
nisms for determining whether Berlin, Hamburg, etc., are capital
cities, whether these cities have soccer teams, whether they are in
the former East or West Germany, or, indeed, whether capital
cities are generally larger than other cities, and so on. Yet, on the
face of it, such special-purpose mechanisms seem liable to lead to
incoherence. Why should we not simultaneously believe, for ex-
ample, that Berlin is larger than Hamburg (because it is a capital
city), but that capital cities are generally smaller than other cities?
Or suppose that we employ a different special-purpose algorithm
to estimate the number of inhabitants of a city (e.g., Hertwig,
Hoffrage, & Martignon, 1999). Might this not lead to contradictory
conclusions concerning the relative size of two cities? A key
attraction of Bayesian methods is that they provide a principled
way of establishing coherence constraints and avoiding such in-
ferential chaos.

Similarly, we suggest that an important consideration for cog-
nitive science is that the brain is not concerned merely with
answering independent “one-off” questions (for which special-
purpose mechanism might be applicable), but with building a
coherent general-purpose model of the external world that can be
used to deal with a vast range of (potentially unforeseen) questions
and challenges. Bayesian models provide a way to explain how our
rich and (at least locally and partially) coherent probabilistic
knowledge is used in, and the sophisticated and flexible inferences
we make about, the world.

Probability Matching as a Case Study

The one topic for which Bowers and Davis (2012) explicitly
identify an alternative to Bayesian models is in their treatment of
probability matching, which they view as posing a challenge to
accounts that assume a rational relationship between beliefs and
behavior. They correctly point out that when presented with mul-
tiple alternatives with different probabilities of producing a re-
ward, a rational agent should always choose the alternative with
the highest probability. Instead, people choose alternatives with
frequencies proportional to their probabilities. Bowers and Davis
propose a mechanism to explain why this might occur in a se-
quence of choices, based on a neural network that implements a
“win–stay, lose–shift” strategy of repeating a choice until it fails to
produce a reward.

Probability matching is an interesting choice of example, as it is
one of the phenomena (together with order effects; Kruschke,
2006) that have played a key role in explorations of possible
mechanisms for approximating Bayesian inference. In particular,
probability matching is what one might expect if people sample
from a probability distribution over alternatives. Many Bayesian
models make the assumption that this is how people select re-
sponses, based on a long tradition of behavioral models of choice
(e.g., Luce, 1959). However, these models reveal a more subtle
pattern than simply matching the probabilities of rewarded out-
comes: In many experiments, people seem to be probability match-
ing to the posterior distribution produced by the Bayesian model.
For example, in the data of Griffiths and Tenenbaum (2006), the
distribution of people’s predictions was similar to the posterior
distribution produced by the Bayesian model. Goodman, Tenen-
baum, Feldman, and Griffiths (2008) found the same pattern for
the rules selected by participants in a category-learning task.

Probability matching to the posterior is a more challenging
phenomenon to explain than probability matching to the frequency
of reward. In particular, it requires a mechanism that approximates
Bayesian inference. Vul et al. (2009) proposed an explanation for
this phenomenon based on the idea that people might be making
decisions based on a single sample from a posterior distribution.
This can be shown to be a reasonable strategy when the value of
a correct decision is low relative to the cost of generating samples.
This account also addresses the move toward deterministically
selecting the highest probability outcome that Bowers and Davis
(2012) raise as an issue for analyses based on sampling, as greater
computational resources or greater value for a correct decision
should result in generating more samples and thus favor higher
probability outcomes. A variety of simple cognitive processes can
be used to obtain samples from posterior distributions, including
the exemplar model approach of Shi et al. (2010) introduced above
and an algorithm that is based on the win–stay, lose–shift principle
(Bonawitz, Denison, Chen, Gopnik, & Griffiths, 2011). The sim-

4 Coherence constraints can be embodied mechanistically in, for exam-
ple, constraint-satisfaction algorithms, as used in both symbolic and con-
nectionist models (e.g., Rumelhart & McClelland, 1986; Waltz, 1972).
Such algorithms are implementations of (approximations to) Bayesian
methods, rather than alternative approaches. Note that recent technical
developments, such as Bayesian graphical models (e.g., Pearl, 1988, 2000),
have provided a richer understanding of such algorithms than was previ-
ously available.
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ilarity of this approach to that proposed by Bowers and Davis
suggests that the gap between Bayesian and non-Bayesian models
may not be as large as it might appear.

Conclusion

Bowers and Davis (2012) summarize their argument (somewhat
ironically) through an application of Bayes’s rule. In the same
ironic vein, we believe that there are several reasons why it is
inappropriate to appeal to Bayes’s rule in this case. First, the
hypothesis that people are optimal is not something that even the
most fervent Bayesian believes. Its prior probability, and hence its
posterior probability, should be zero. Second, the alternative hy-
potheses are not specified. Despite chastising Bayesian modelers
for failing to compare to alternative accounts, Bowers and Davis
do not identify specific frameworks to which the approach can be
compared or attempt to evaluate the merits of these frameworks.
Finally, and perhaps most importantly, the hypotheses being eval-
uated are not mutually exclusive, and the problem that we want to
solve is not determining which of these hypotheses is true. Rather,
the question is how we as scientists should organize our efforts.
Different theoretical frameworks, such as Bayesian modeling, con-
nectionism, and production systems, have different insights to
offer about human cognition, distributed across different levels of
analysis. A connectionist model and a Bayesian model of the same
phenomenon can both provide valuable information—one about
how the brain might solve a problem, the other about why this
solution makes sense—and both could well be valid. The ultimate
test of these different theoretical frameworks will be not whether
they are true or false, but whether they are useful in leading us to
new ideas about the mind and brain, and we believe that the
Bayesian approach has already proven fruitful in this regard.
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